Locally Analytic Schemes: a Link between Diffusion Filtering and Wavelet Shrinkage
نویسندگان
چکیده
We study a class of numerical schemes for nonlinear diffusion filtering that offers insights on the design of novel wavelet shrinkage rules for isotropic and anisotropic image enhancement. These schemes utilise analytical or semi-analytical solutions to dynamical systems that result from space-discrete nonlinear diffusion filtering on minimalistic images with 2×2 pixels. We call them locally analytic schemes (LAS) and locally semi-analytic schemes (LSAS), respectively. They can be motivated from discrete energy functionals, offer sharp edges due to their locality, are very simple to implement because of their explicit nature, and enjoy unconditional absolute stability. They are applicable to singular nonlinear diffusion filters such as TV flow, to bounded nonlinear diffusion filters of Perona–Malik type, and to tensor-driven anisotropic methods such as edge-enhancing or coherence-enhancing diffusion filtering. The fact that these schemes use processes within 2 × 2-pixel blocks allows to connect them to shift-invariant Haar wavelet shrinkage on a single scale. This interpretation leads to novel shrinkage rules for twoand higher-dimensional images that are scalar-, vectoror tensor-valued. Unlike classical shrinkage strategies they employ a diffusion-inspired coupling of the wavelet channels that guarantees an approximation with an excellent degree of rotation invariance. By extending these schemes from a single scale to a multi-scale setting, we end up at hybrid methods that demonstrate the possibility to realise the effects of the most sophisticated diffusion filters within a fairly simplistic wavelet setting that requires only Haar wavelets in conjunction with coupled shrinkage rules.
منابع مشابه
From Tensor-Driven Diffusion to Anisotropic Wavelet Shrinkage
Diffusion processes driven by anisotropic diffusion tensors are known to be well-suited for structure-preserving denoising. However, numerical implementations based on finite differences introduce unwanted blurring artifacts that deteriorate these favourable filtering properties. In this paper we introduce a novel discretisation of a fairly general class of anisotropic diffusion processes on a ...
متن کاملCorrespondences between Wavelet Shrinkage and Nonlinear Diffusion
We study the connections between discrete one-dimensional schemes for nonlinear diffusion and shift-invariant Haar wavelet shrinkage. We show that one step of (stabilised) explicit discretisation of nonlinear diffusion can be expressed in terms of wavelet shrinkage on a single spatial level. This equivalence allows a fruitful exchange of ideas between the two fields. In this paper we derive new...
متن کاملCorrespondence between Frame Shrinkage and High-order Nonlinear Diffusion
Nonlinear diffusion filtering and wavelet/frame shrinkage are two popular methods for signal and image denoising. The relationship between these two methods has been studied recently. In this paper we investigate the correspondence between frame shrinkage and nonlinear diffusion. We show that the frame shrinkage of Ron-Shen’s continuous-linear-spline-based tight frame is associated with a fourt...
متن کاملIntegrodifferential Equations for Continuous Multiscale Wavelet Shrinkage
The relations between wavelet shrinkage and nonlinear diffusion for discontinuity-preserving signal denoising are fairly well-understood for singlescale wavelet shrinkage, but not for the practically relevant multiscale case. In this paper we show that 1-D multiscale continuous wavelet shrinkage can be linked to novel integrodifferential equations. They differ from nonlinear diffusion filtering...
متن کاملFrom two-dimensional nonlinear diffusion to coupled Haar wavelet shrinkage
This paper studies the connections between discrete two-dimensional schemes for shift-invariant Haar wavelet shrinkage on one hand, and nonlinear diffusion on the other. We show that using a single iteration on a single scale, the two methods can be made equivalent by the choice of the nonlinearity which controls each method: the shrinkage function, or the diffusivity function, respectively. In...
متن کامل